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FOREWORD .

This report is a detailed explanation of the progress made in
the sampled-data area of Contract No., NAS8-11116 granted to Auburn
Research Foundation, Auburn, Alabama. The contract was awarded
October 21, 1963 by the Georce C. Marshall Space Flight Center,
National Aeronautics and Space Administration, Huntsville, Alabama.

The w§rk reported in this document is the results of an investi-
cation by Willie L. McBaniel, Jr., Auburn University, of a spmecial

method of analysis for a certain class of sampled-data systems,
y Yy
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SUMMARY .

The development of a transform for analyzing a special class of
sampled-data systems is given, The transform, called the x~-transform,

is applicable to sampled-data systems which have all samplers followed

by zero-order hold devices.
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I. INTRODUCTION

The field of sampled-data systems has beén of increasing impor-
tance and interest to engineers and scientists over the past Fifteen
years. Many text books on digital and sampled-data control systems
have been written and used in the classroom and industry. The prin-
cipal tool for the analysis and syrthesis of sampled-data control
systems in these books is the z-transform,

The z-transform analysis is based on impulse samplina, which
can be only approximated in a real system. In the practical system
the "impulse" is actually a very narrow pulse and the normal
z-transform analysis gives results that are actually incorrect if the
sampler is not followed by a data-hold device. The z-transform
analysis gives good results when the practical sampler is followed

by a hold device. The zero-order hold is a common example of such

e
<

a device, and it has been described in the literature.l’ 2 Since
the combination of a sampler and zero-order hold appears in bractice
as a composite device, it would seem feasibie to develop a transform
theory about this combination.

Doetsch3 considered such an approach in a combination of devices

termed the pulse-former and impulse-lengthener, The general theme of

*Superscripts refer to references listed in the Reference section,



this approach led to the z-transform approach in an open-1oop
configuration.

Gardner and Barnesh developed a theory around jump functions.
This approach could be extended to a sampler-hold analysis; however,
it was developed as an aid in the solution of 1inear difference
equations with constant coefficients.

Farmanfarma”? 6, 7 recognized the need for an exact method of
analyzing sampled-data systems with finite pulse widths. The p-
transform and its theory were developed, and the method provides an
exact analysis of finite pulsed linear systems. The p-transform
tables included in the references by Farmanfarma make it possible
to compute the output of a finite-pulsed system as a continuous
function of time. It has been shown that as the pulse width p ap-
proaches the sampling period T, the p-transform approaches the ordinary
Laplace transform for continuous systems. Therefore, the p-transform
is a special case of the Laplace transform.

Another effort toward the analysis of systems with finite width
sampling was provided by Tou8. The deveiopment of the T -transform
was based on the delayed z-transform and should be used in
conjunction with the modified z-transform,

The approaches to the analysis of systems through finite pulse
duration samplers have provided the necessary tools for accurate
analyses of sampled-data systems. There is, however, a large class
of systems in which the sampler is followed by a zero-order hoid
circuit., It is this class of systems that is considered in this

dissertation.



The purpose of this investigation is the development of the
general theory of a transform, called the x-transform, for a sampler-
hold combination in open-loop and closed-1oop sampled-data control
systems, The stability criteria for such systems are investigated,
The application of the x-transform method of analysis to various

sampled-data systems is also investigated.



II. THE X-TRANSFORM THEORY

In most feedback control systems employing sampled-data, the
high frequency sidebands occurrina as the result of the sampling
operation must be removed before the signal is applied to the contin-
uous part of the system. This step becomes absolutely necessary since
the continuqus signal must be reconstructed from the sampled sianal.
Thus sampled-data systems must possess either inherently or by design
some type of hold device or data reconstruction device. The zero-
order hold circuit is quite popular and has been thoroughly studied

in the Hterature.l-2

Definition of the X-Transform

Since the hold device and the sampler may occur as an entity,
it would seem feasible to treat them as such in a transform analysis.,

Figure 1 shows this combination in block diagram form,

P T s s T e ee e st et c e e - -
' i
!
; |
o |
E(s) ! /r E"(s) zero 1 Eols)
e(t) ' order ! ”~
: T hold :eo(t)
'
| i
| j
L VS |

Fig. 1. - Sampler and zero-order hold combination.

L
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It is assumed that the sampler is ideal. The output of the

zero-order hold (z.0.h.) device is given by

eozts = e(2) u(t) - e(®)u(t-T) + e(Tu(t-T)

- e(Tu(t-2T) + ... (11-1)

Taking the Laplace transform of both sides of equation (II-1) yields

O] " e(n) _ e(0)e™ 'S . e(T)e” 'S e(T)e 2Ts
9 =

s s s - s + LI (II"Z)
Equation (II-2) may be rearranged to give
]_e-Ts T
Eoiss = [ e(0) + e(T)e™'S
+ e(2T)e 2Ts & J (11-3)
or
—_— it e-nTs s e-(n+l)Ts
EO(S) = Z e(nT) —— 0. - Z e(nT) —— (11-4)
n=»_ S n=" S

It is convenient to introduce a change in variable by settina

-nTs
e

3
1

(11-35)
S



6

Substituting (II-5) into (II-4) results in

o0

£ = Y enG o™ (11-6)

n=0
0 0 .
It should be observed that x # 1, but x = 1/s, Therefore, (II-6) is

E(x)

e(0)(x" - x) + e(T)(x - x2)

+e(2T(x% - x3) + ...

e(0) xO + X [e(T) - e(Oﬂ + e (11-7)

By definition, the x-transform of e(t) is

A[e®] = 602 s _-nTs (11-8)

Evaluation of Some X-Transforms

Definitions for x-algebra

In the evaluation of x-transforms some manipulations with x will
be necessary. The following definitions are now made and will be
retained for the remainder of the x-transform work:

n e-nTs/ S

a. X =

(11-9)




-mTs
b x = e
p
Then
-nTs
n m e -mTs m+ n
X X = e = X
P s

r. n . . Nner
If x is factored from x , the remainder is xp or

0 0
Note that, while x = i/s, xp =1.

The x-transform of a unit step, u(t)

E(x) = e(0)(x° - x) + e(M(x - x°) + ...
= e(0) x0 + [e(T) . e(o)] X+ ..
= x0 + (1 -1) x+ ..,

E(x) = {1£[u(tﬂ = %0

(11-19)

(11-11)

(I1-12)

(11-13)

(I1-14)




The x-transform of a ramp, e(t) = t

E(x) = O(x0 - x) + T(x - xz) + 2T'(x2 - x‘3) + v (11-15)
= Tx + sz + Tx3 + eee
- 2 3
= Tx [I+xp+xp+xp+...]
Tx .
E(x) = ———— (11'16)
1 - xp

The x-transform of the exponential, e(t) = e~ 2t

-aT 27T _ -aT

E(x) = x0 + x(e - 1) + x ) + ues (11-17)

E(x) = x0 + (e-aT - 1) X | — (11-18)
‘1 - e-aT X
p
0.
E(x) = __(x___")_ (11-19)
1 - e-aT X

p

The x-transform of sin &t and cos w t

The x-transform for sinusoids can be obtained from (11-19) by
setting a = -jw. The 'M[cosw t] is the real part of the subsequent

equation and the /X[sinw t] is the imaginary pll’t.. The results are
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x0 - x+(x2 - X)cosaT
y/[cos w t] = (11-20)
2
xp - 2xp cos WT + 1
and
x(1 - x) sin wT
4 [sin w t] = P (11-21)
xs - 2xp cos wT + ]

A table of x-transforms is provided in Appendix A, where x and
xp have been made indistinguishable from each other by dropping the
subscript p. If in using this table, it becomes desirable to return
to the x - xp form of the transform, x appears only in the numerator
and xp appears only in the denominator. Note that in setting up
this table, (II-11) has been used for eliminating xp in the numerator,
If xn in the numerator is factored, it must be factored according to
(I1-12); i.e., x" = x" x;'r .

Because of the simplicity and usefulness of the power series
method for obtaining the inverse transform, this method is generally
employed. The expansion of E(x) in a power series will be made void
of xp, thus eliminating the requirement of distinguishing between x
and xp. However, when inverting by the partial fraction expansion

or by the inversion integral, where x and xp both appear, it will be

found convenient to distinguish between the two.
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The Inverse X-Transform

Power series method

The inverse x-transform may be obtained through the power series
method. E(x) is expanded in a power series in powers of x. The

coefficient of the term x" corresponds to the change of the value of

the time function e(t) at the n-th sampling instant, as can be seen

from (II-7). The function e(t) is constant between sampling instants,

As an example, consider the x-transform of e(t) = t

/)L[t] T (11-22)

1 - x

E(x) = Tx + Tx2 + Tx3 + e (11-23)

A plot of the inverse of (II-23) is shown in Figure 2.

e(t)

Fig. 2. - Output of a sampled-hold device with a ramp input.
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Equation (II-23) can be rearranged as
2 2
E(x) = T(x - x°) + 2T(x° - x3) + e (I1-24)

In this form the coefficient of each x-difference term is the output
over the corresponding sampiina period. Of course the result is the

same as that shown in Figure 2,

The partial fraction method

In the analysis of a system having continuous signals, the partial
fraction expansion of the Laplace transform of E(s), where E(s) is a

rational fraction in s, is given as

E(s) = + + + e (11-25)

from which the inverse Laplace transform may be obtained as

- - -ct
e(t) = Ae @ 4 e Pt L o7t . (11-26)

It would seem that E(x) could be put in a similar form; that is,

A
E(x) = + + + ees (11-27)

However, an investigation of the x-transform table in Appendix A

reveals that the terms on the right-hand side of (I1-27) do not appear
-aT X)

as such. The x-transform of Ae 2t is A(x0 -x)/ (1 - e
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Therefore, if each term in the partial fraction expansion is expressed

-aT
in the form of A(xO -x) /(1 -e a x), the inverse x-transform may

be expressed as a sum of exponential functions.

It is desirable then

to expand E(x) / (x0 - x) in the form of (II-27) and then to multiply

each of the expanded terms by (x0 - x). An example of the use of the

partial fraction expansion method for finding the inverse x-transform

is given in Example | in Appendix B.

The inversion formula method

The time function e(t) may be obtained from E(x) by an inversion

formula, which is based on the real inversion formula of the Lanlace

transform, The derivation of the inversion formula is as follows:

The inverse transform in s is

cHjco
1 ts
e(t) = E(s) e ds

The value of e(t) at the n-th sampling instant is

c+jw

e(nT) = E(s) enTS ds

2T j

c-joo

(11-28)

(11-29)

The constant ¢ is greater than g~ where 0’; is the abscissa of absolute

convergence of the Laplace transform., The path for the integration in

the s-plane is shown in Fig. 3a.
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The corresponding path in the xp-plane is a circle which encloses
all of the singularities of E(x)x;(n+') / (xq - x). x  is a pseudo

x-transform as defined in (II-19). It is noted that

Xq e = 2z (11-30)

where z is the variable of the ordinary z-transform. A detailed
expianation of xp is given in the introductory portion of Chapter IV,
It is noticed that the path of integration in the s-plane passes
through the periodic strips vertically; therefore, the integration in

(11-29) may be broken up into a sum of integrals given by

0o ¢+ (k+3jw,

1
e(nT) = Z E(s)e Sqs (11-31)
2T ;

= .00 ¢+ (k-%)jws

where w = 27/ T. Replacing s by s + jkw  alters (II-31) to
s

E(s+jk us) .

Interchanging the summation and integration signs and simplifying

(11-32) gives
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1 C+j ws/z (o o)
. nTs
e(nT) - Z E(stjkw ) e ° ds (11-33)
2T k=-00
] c-ja)S/Z
However, in normal impulse sampling
(o]
~u - ] [ 4 A .y f £~ ,.1 . Y
Ex(s) = — E(s + jkw ) ; Le\)) =1 (11-34)
T s
k=-00
and (II-33) may be written as
C+j 05/2
T T
e(nT) = E¥(s) e"'° ds (11-35)
. 2 .
m ] c-j ws/z

The transfer function of a zero-order hold is

Q(s) = (11-36)

Therefore, from Figure 1 it is seen that

E(s) E(s)
ex(s) = = (11-37)
Q(S) 1 - e-TS

S
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Introducing (I1I-37) into (II-35) and noting that the presence of the
zero-order hold causes the output to be constant between sampling

instants, one obtains

e(nT) [ u(nT) - u [(n - l)fﬂ

c+jw /2 _
T ] s E(s) enTs
- f ds (11-38)
2 7T_] _j 1 - e-TS
c - jcos/h "

In the evaluation of (II-38), a change in variable is found to be

convenient. Let

x b Ts (11-39)
p
Then
dx | = T TS (11-40)
or
dx
ds =T cm— (I1-41)
-Tx

Substituting (II-39) and (II-41) into (II-38) gives
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e(nT) [u(nT) -u [ (n - I)T]}

T E(x)

dx (11-42)
n+1 p

N n
2T -(x - x )Txp

It should be noted that the integrand of (II-42) is a function

only of xp. The path of integration, r; s is the circle obtained by
mapping the line s = ¢ + jw from the s-plane onto the xp-plane as
shown in Figure 3b. The area to the left of c is mapped outside the
circle and the area to the right of ¢ is mapped inside the circle,

Simplifying (II-42) gives

e(nT) [u(nT) - u [(n - I)T]]

! E(x) x;("+‘)
—_— & (11-43)

T 2
2T j X - X

- j;ﬂ Residues of E(x) x;(n+])/(xD - x)

——d

-(n+1)

at the poles of xp (11-44)

The residues in (II-44) may be obtained by the following

relationship:
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E(x
p)
Res J Of
(n+1)
X
P J
n
1 _ d N1 E(x,)
= Tim xp , (11-45)
n ! X =) dx xn+
P P
. ) ) r.. ;0 -{n+1) , .
It is also seen that, if [E(x) / (x - x)] Xg is expressed in
(o5}
a series, such as }: K, x; x;+] , the coefficients of
n=0

the x  term are the residues Kn, which for a given n is the value of

e(t) over the nth sampling instant as was indicated in (11-24),
The integral of (II-43) may also be evaluated through the aid

of the contours shown in Figure 3b. Thus,

E(x ) E(x ) E(x )
p p ' p
- dx + dx dx
T n+l P B n+d P L n+l P
X X X
p P P
E
(xp)
+ dx
B n+l P
%o

= 2773 Z Residues of E(xp)/x;”

at poles of E(xp) (I1-46)
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It may be observed that the integrals along the paths {: and E:
cancel each other. The integral along [Z » which is chosen as a
circle with center at the origin, will be evaluated with R approaching
infinity, thus assuring that all the poles of E(xp) are in the desired
region. Therefore, with a change of variable the integral along f;
becomes

21T

E(Re}®)j de

- = 0 11'47)
R" e] ©n

if E(ReJe) approaches zero as R approaches infinity. Stipulating

this condition on the integral along r; , (II-46) becomes

E(x.)
P dx = - j;ﬁResidues of E(x_) / X1
£ nal P r— ? P

J o
*p

at poles of E(xp) (11-48)

The inverse x-transform may be obtained by (II-44) or (II-48).

As an examplie, determine the inverse x-transform of

E(x) (11-49)

H

Using (II-48), one obtains
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e(nT) [lJ(nT) -u [ (n - l)T]]

1 (0 - x) x;(n+])
D — - dx (11-50)
2 -aT b
2 TT (x7 - x)(1 - e xp)

-(n+1) aT
x e

- ZE: Residues of i at x = e'T
‘ eaT P

(eaT)'(n+|) eaT

-anT (11-51)
e

The value of e(t) is obtained from (I1-51) as

oQ
e(t) = Z emanT [u(t -aT) - u [t () T]] (11-52)

n=9

For a second example of the use of the inversion formula see Example 2

in Appendix B,

Theorems of the X-Transform

Addition and subtraction

If el(t) and ez(t) are Laplace transformable and
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£, (x) = %[el(t)J VEy(x) = %[ez(t)J then
% [e](t) + ez(t)] = E(x)+ E, (x)

Proof: By definition

o0
:&L[el(t) + ez(tﬂ = :E: [e](nt) + ez(nt)] (xn-xn+l)
n=90
8o N
e ® 2 e0) = Z e, (nt) (x" - ™)
n=0
o0
iz e (nt) (x" - ")
n=9

= B (x) # E,(x)  Q.E.D.

Multiplication by a constant

If E(x) is the x-transform of e(t), then

K aetr)] = 2 Y] = a0

Proof: By definition

(11-53)

(I1-54)

(11-55)

(11-56)

(11-57)
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n+1

o)
ae(t)] = ae(nt) (x" - x ) (11-58)
L] -
n=0
0
n n+1
= a Z e(nt)(x - x ) (11-59)
n=0
=  aE(x) Q.E.D. (11-60)
Shifting theorem
If I[e(t)] = E(x), then
Ylett + 1] - x| [E60 - e - 0] (11-61)

Proof: By definition

o
Alee + 1] = E{: e[+ 1] "™ (11-62)
n=0
= x;] i e [(n + I)T] (x" - xnﬂ)x':>
n=0

H
x
o B |
o
—
o~
3
+
=
_I
ad
——
X
3
+
xX
3
+
N
A
—~
—
—
1
o
W
S
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Let k = n + 1, Therefore,

o0

G [ete + n] - ! j{: e (kT) (x* - x<*1 (11-64)

k=1

Now in order to make the summation over k from zero to infinity, it

is necessary to add and subtract e(0) (x9 - x). Thus

o0
A et + n] - x:! jg: e(kT) (x* - x<*T)
k=0
- e(0)(x? - x) (11-65)

= ! [ - e@ " - x] a.E0. (11-66)

Since (II-66) is in a product form, the subscript p is omitted, but

understood.

j([e(t s2m] = X7 [eGo - e(0) (x° - 0]
- x T eMix’ - x) (11-67)

Proof: Using the Shifting Theorem results in
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A [etx + 2n)] N[ T+ 1)
x”! [ Ylete + 1] - et + 1)

(x° - x)

i

i

] (11-68)

Reapplying equation (II-61),

H

CM[e(t4—2Tﬂ

) - e - 0]

- x eMm - x) Q.E.D. (11-69)

The extension of Corollary I to :Z[F(t + mTﬂ can be made

resulting in

m-1

A'[e(t + mT)] = x" l|.-E(x) - Z e(nT)(xo - x)x‘nJ {(11-70)
n=0

Corollary II. If j([e(t)] = E(x), then

Q([e(t - nT) ult - nT)] = x" E(x) (11-71)




- - -

Proof: By definition

CK[e(t - nT) u(t - nTﬂ
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o0
}E: e [(m - n)T] u [(m - n)T]
m=0

(x -x ) (11-72)

w'
= x" j{: e [(m - n)T] u [(m - n)T] *
=)

m=:,

(x™N L M (11-73)

Let k = m - n., Therefore,

oo

y[e(t - nT) u(t - nT)] x" Z e(kT) u(kT) *

k=-n

, k k+1,

(x - x ) {(11-74)
However, e(kT) u(kT) = 0 for k < 0. Therefore,

co

;K[e(t - nT) u(t - nT)]

x" Z e(kT) U(kT)(xk-xk+])(II-75)
k=9

x E(x) Q.E.D. (11-76)
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Initial value theorem

E(x)
If jk,[e(tﬂ = E(x) and if 1im e exists, then
0 0
x>0 X - x x =1
1im  e(t) = tim E(x) - (11-77)
t*9 x=+0 'B"""' 0
X - X x =1
Proof: By definition
E(x) 1 o
= - ZE: e(nT)(xn - xn+1) (11-78)
xD - X x‘ - X
n=0
E(x) e(T)(x - xz) e(ZT)(x2 - x3)
= e(O) + + F e (11'79)
0
X0 - x (x° - x) (x" - x)

Taking the 1imit as x approaches zero of both sides of (II-79) and

setting xo equal to one, results in

E(x)
lim  e(t) = e(?) = 1im

t—» X7 X

Q.E.D.(II-8))

It may be seen from (II-9) and (II-17) that x' approaches zero as

T approaches infinity for n # 0, and xs approaches zero as T approaches
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infinity; therefore, no distinction is made in x and x . xO is
independent of T. This can also be seen from the relationship
0

X = X xp. The 1imit as x approaches zero with x0 = | also assures

that xp approaches zero.

Final value theorem

If Gﬁ[e(t)] = E(x), then

lim  e(t) = 1im E(x)

t— 00 X —p ] 9 (11-81)

Proof: From equation (II-65) and the subtraction theorem, one obtains

"\ [e(t +7T) - e(t)] - x;][E(x) - e(d)(x" - x)] - E(x)(11-82)

Note that the subscript p has been included here, but it will be shown
later that its inclusion is unnecessary in the application of the

theorem, Rearranging (I11-82) gives

x[eu +T) - e(t)] = E(x) ,[";] - 1]

- x) (11-83)
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However, by definition

| K

| %[e(t +T) - e(t)] = lim z [e(n+])T
| k=—00
n=0
- e(nT)] x" - "1y (11-84)
Expanding (II-84) aives

PR,
o
~~
(ad
+
|
Sow?
'
]
L
(a3
S
—
i

Tim f e(") x? (1 - xp)

k=00

v e(M(x? = x)(1 - x)) + e(2T) (x - x2) (1 - x)

b ouee + e(kT) (x5

- xk)(l - xp)

+ e [(k‘+ I)T] xK (1 - xp) ] (11-85)

and

(t +T) - e(t)
j//[e ° ] = 1im [- e(m x” + e(M(x” - x)

i - K=
X5 oo

+ e(2T)(x - x2) Foeee + e(kT)(xk'] - xk) + e[‘k+l)T] ka

(11-86)
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It is observed that, if the limit is taken of each side of (II1-86)

as x approaches one with x° equal to one, (II-26) becomes

lim j( [e(t +T) - e(t)]

x—1 = e(c0) - e(0)
1 - xD 0
‘ x =1 (11-87)

However, from (II-83) one obtains

j([eu £ T) - e(t)]—. B e % 168

Taking the limit of each side of (I1-88) as x approaches one with

x9 equal to one cgives

1im :K[e(t +.T) - e(t)] lim E(x) -e(0)

X=p ] x—+} 0

P 0 (11-89)

It should be observed that x = x0 xp. Therefore, when x approaches
one with x'3 equal to one, X also approaches one. Equating the

right-hand sides of (II-87) and (II-89) gives

e(") - e(‘-j) = 1im E(X) - e({)) (11_9.‘))

x =l )
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or

e(oco)

lim E(x) Q.E.D. (11-91)

X—} 0

An example of the application of the final value theorem is given

in Example 6, Appendix B,

Complex translation

If the Cx [e(t)] is E(x), then

/i e2te(t)] = (1 -x € (xe?) (11-92)

where El(x) is E(x)

I - x

Proof: By definition

A2 er)] - i e(nm) &1 (" - XM (11-93)
n=0
o0
= (1-x) Z e(nT) (22T x)" (11-94)
n=0

+aT
Let xem = X1 then




X[eiat e(t)] = (1 - xp) z e(nT) x? (11-95)
n=0
= (1-x) £(x) (11-96)
o} 1
= (1 -x)E (xe*T) Q.£.D. (11-97)

Examples utilizing the x-transform theorems have been included

in Appendix B.

Relationship Between X-Transform and Z-Transform

The definition of the x-transform has been given by equation

(II-5). The definition of the z-transform is given in the literature

as

Iy -3

eST (11-98)

The relationship between the x-transform and the z-transform will now

.
be derived.

By definition

as—) e(nT) e-nTS -e‘ (n"'])TS

(11-99)

~

3
1]
o

S

(11-100)

i
®
—~
3
-
S
o
'
3
-
n
t
n
o

3
1
(]
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Therefore,

~—
1]

[

1

™18
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e(nT) e NTs

3
i
o

j[e(t)] IR

(11-191)

(11-102)



ITI. THE TRANSFER FUNCTION

The transfer function for a continuous system is G(s) = C(s)/E(s)
for the open-loop case and G(s) / [l + G(s) H(s)] for the closed-1loop
case. The transfer function for a sampled-data-hold system in the
open-loop and closed-loop confiauration will now be derived from the

> ST tikd

basic block diagrams for each of the above cases.

Ooen-LooE

The derivation of the open-loop transfer function depends on the

block diagram3 representation of Figure 4. In the x-transform analysis,

-
: () 5 Gl e o
T

! i
i .
'Fictitious Sampler:

Fig. 4. - Open-looo sarmpled-data system.

1 EW)

11 A,
always follo

ad ki
vwou J

the ideal samnier is y & zero-order hoid device.
In Fioure 4 the zerc-orcer hold is desianated by Q(s). G(s) is the
plant and the continuous outnut is C(s)., From the block diaaram of

Figure &4, the followino equations can be written or defined:

0(s) 9 —_— (111-1)

33
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R(s) 2 a(s) als) (111-2)

se(s) = L[or®)] = 6s) /s (111-3)
Then

r(0) = LR = g0 ule) - gt - Du(en  (111-)
Now,

C(s) = R(s) E*(s) (111-5)

Starring (III-5) gives

Cx(s) = R¥(s) Ex(s) | (I11-6)

where the starred transform indicates normal impulse sampling. Then

C{s) = Q{s) C*x(s)
= Q(s) E*(s) R*(s) (111-7)
Therefore,

c(s) = E(s) R*(s) (111-8)
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Equation (III-8) gives the relationship between the barred input

and barred output. The open-loop barred transfer function is

— = R¥(s) | (111-9)

It is evident that the barred functions may be written directly as

functions of x, but it is not evident that the same is true for R*(s),

By definition,

=
R*(s) = 214 r(nT) e TS (I11-10)

From (III-4)

r(t) = gR(t) u(t) - gR(t - T) u(t - T) (I11-11)

and
r(0T) = e (nT) - g [(n - 1)'ﬂ (111-12)

Substitutina (III-12) into (III-19) yields

o0

R¥(s) = j{: {QR(HT) - 9 [ (n - 1)'ﬂ ] e "Ts (111-13)

n=0
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(o o) o0
R(s) = Z g, (nT) e TS Z gR[(n - 1)7] e TS (111-14)
n=0 n=0

Now an index change is made by letting m = n - 1 in the second

summation. Therefore,

However, gp(mT) = 0 for m<0 which alters (III-15) to

[e2) o0

R%(s) = Z ap(nT) TS Z ap (mT) e~ (m+1)Ts (111-16)
n=9 m=90 |

Since the summations are over the same limits, (III-16) may be written

as

o
R%(s) = Z gR(nT) [e‘nTS - e-(n+l)Ts] (III_]7)
n=0

From (III-17) and (II-10), it is seen that R¥*(s) can be expressed
as a function of xp. In fact, comparing (III-17) with (II-6), it is

seen that
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n

Llees) = 4 [609))

G(s)

GR(X)

(111-18)

where j{[G(s) / s] is a function of x only. However, as will be
D

seen, no problems arise from dropping the subscript o in Xye Then

from (I11-8),
C(x) = E(x) GR(X)

It should be observed from Figure 4 that

C(s) = G(s) E(s)

and therefore in view of (III-19),

G(s)
c(s) = E(s)

(111-19)

(I11-20)

(111-21)

An example wherein (III-19) is used will clarify the definition

of GR(x).
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Examples indicating the use of equation (III-19)

Determination of the output, C(x), for a sampled-hold-data system

with G(s) = E;T and T = | second. - It is assumed that a unit step

function is applied at the input and the system is that shown in

Figure 4, From (III-19)

C(x) = E(x) GR(x) (I11-22)
! 0
E) = K|—| = x (111-23)
S
G(s) 1
GR(x) = % = [
s s(s + 1)
; (x2 - x)
= X e e—— (111-24)
-T
I - e X
or
0,632 x
GR(x) = e—— (111-25)
1 - .368 x
Combining (I1I-23) and (III-25) according to (III-22) yields
0.632 x 0.632 x
c(x) = x° = — (111-26)

1 - .368 x 1 - .368 x
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Using the power series method for taking the inverse of C(x), (III-26)
becomes

3

C(x) = 0.632 x + 0,232 x2 + 0,9855 x~ + 0.0315 xh + ... (I11-27)

The inverse of (III-27) is plotted in Figure 5.

c(t)
»
].OD o ').399‘ - QL98‘)
0864 [3.9855
0.75 | 7 | 0.232
c t ,0-632
0.5 } s
/
I/
! 0,632
0.25 /) 3
/
/
O / e e Y A 3 28
T 2T 3T 4T 5T 6T 7T

Time in Seconds

Fig. 5. - Output response of a fictitious sample-hold for
the system with G(s) = 1/ (s+1) and a unit step input.

V4 0.864 272 + 0.949 23

C(z) = 0.632 z~

+ 0,980 z "+ ... (111-28)

These values check the x-transform analysis and are also indicated

in Figure 5,
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Determination of the output, C{(x), for a sampled-hold-data system

with G(s) = gI%;T)and T =1 second. - A unit step function is applied

to the input of the system shown in Figure 4. From (III-18)

C(x) = E(x) GR(x) (111-29)
] 0
E(x) = j( —_— = x (111-39)
s
G(s) i
6 (x) = %[ } - 7([—2—-———-] (111-31)
s s” (s + 1)
= ;K_[t -1+ e-t] (111-32)
X 0 x0 - x
= . X A ———— (111-33)
I - x 1 - .368 x

Combining terms,

0.264 x% + 0.368 x
6, () = (111-3k)
0.368 x> - 1.368 x + 1

Substituting (III-39) and (III-3L4) into (III-29) yields

0.368 x + 0.264 x2
c(x) = (111-35)
| - 1.368 x + 0.368 x2
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Using long division in order to express C(x) in a power series in x

gives
. 2 3 L
C(x) = 0.368 x + 0.768 x~ + 0.915 x” + 9,968 x + ... (III-36)

The inverse of (III-36) is plotted in Figure 6,

3.9 Pl

2.5 F ol 0.968

2.0 3 7

1.5t ’

c(t)
N\
@

(e )N

1.0 F 7

2.5t .~ 0.368

8] T 2T 3T LT
Time in Seconds

Fig. 6. - Output response of a fictitious samole-hold for

the system with G(s) = 1/s(s+1) and a unit step input.

A normal z-transform analysis of this system gives
C(z) = 0.368 27! + 1.136 272 + 2,051 273 + ... (111-37)

The values for the z-transform analysis are also shown in Figure 6,

and they agree with the x~transform evaluation,
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Closed-Loop

Derivation of the transfer function

The derivation of the transfer function for a closed-loop sample-

hold-data system follows from the block diagram of Figure 7.

1. ., ‘——_
U(s)+QE(s) )(tzn(s)a o(s) E(s), a(s) C(S—)—*l—"is—ﬁa(s) F(_s_)_,_
| - T T L
i
H(s) |«
Fig. 7. - Closed-loop sampled-data system.
The closed-loop transfer function is derived as follows:

C(s) = G(s) E(s) (111-38)

E(s) = U(s) - H(s) C(s) (111-39)

E(s) = U(s) - H(s) G(s) E(s) (111-42)

It is seen from (III-20) and (III-21), that when the barred

transform of a product of the type A(s) B(s) is taken, the result is

[A(s) / s] B(s). Thus, barring (II1I-40) gives

—_— —_— H(s) G(s) ——
E(s) = u(s) - — E(s) (I11-41)

S



L3

Solving for E(s) in (III-41), the barred transform of e(t) is given as

U(s)
E(s) = —_— (111-42)
H(s) G(s)

S

However, from (III-38) and (III-21) the barred transform of the

system output c(t) is obtained as

G(s)
C(s) = E(s) (I11-43)

Substituting (III-42) into (III-43) yields

G(s) -
] w

C(s) = (I11-44)
[ H(s) G(s) ] |
1 + | ——————
L s J

The x-transform is obtained directly from (III-44). The closed-loop

transfer function is given as

C(x) Gp(x)
= (111-45)

U(x) 1 + (GH)R (x)
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where
G(s)
Gy (x) - % = (111-46)
s
and
A H(s) G(s)
H = S -4
(G )R(x) % : (I111-47)

If there is unity feedback, then

C(x) GR(x)

(111-48)
U(x) 1+ GR(X)

The work in Chapter IV on stability will be based on (III-45)

and systems such as that shown in Figure 7.

Example of x-transform analysis of a closed-loop system

Assume a system such as shown in Figure 7. Let H(s) = 1,
1
G(s) = ————— and T = 1 second. The input is a unit step function.
s(s + 1) '
It is desired to determine the sampled-hoid output response,

From (III-48)
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C(x) = w (III-LI'9)
1 + R(x)
G(s) 1
G (X) = ———— = o ——————
" %L ] 7([52 (su)]
0.368 x + 0.264 x2
= (111-50)
1 - 1.368 x + 0,368 x2
1
U(x) = 7([——] = X0 (111-51)

Substituting (III-50) and (III-51) into (III-49) and simplifying yield

0.368 x + 0.264 x>

C(x) = _ (111-52)
1 - 1.00 x + 0.632 x°
From (III-52) it is found that
C(x) = 0.368 x + 0.632 x® + 0.400 x3 + 0.000 x%
- 0.253 x° - 0.253 xb - 0.093 x7 + 0.067 x8
+0.128 x7 + 0.0859 x'° + 0.0049 x!!
- 3.0‘493 X‘Z - 00052L} X]3 + e (III'SB)

——

c(t) from (III-53) is plotted in Figure 8.
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10

A z-transform analysis of the same system gives

c(z) = 0,368 z" +1.00 272 4 1.40 273 & 1.40 z'“ +1.15 2
+ 0,99 z'6 + 0,8 z'7 + 0,86 z'8 + 0.97 294 1.05 2~10
+1.06 27 & 1.01 z"2 + 0.96 z"3 +oeee (111-54)

The values of (III-54) are also shown in Figure 8. The slight differ-
ences in (III-53) and (III-54) are the result of the number of

significant figures retained in each analysis.

System with Samplers in the Forward

Path and the Feedback Path

Consider the case of a sampler-hold in the forward path and a

sampler-hold in the feedback path. Such a system is shown in Figure 9.

it P,
% 7 C* : |

U(s)+ Els E (S Q(S) E(S) R G(S) c(sl-_/Y_(,:_”_(%.l Q(s):.g.(—s.)-).
- T T Lo—d

Cx{s

\
H(s) [* Q(s) “—N‘
4

Fige 9. - Closed-loop sampled-data system with sampled-hold
devices in the forward path and the feedback path,

The determination of a transfer function for the system is as follows:

From (III-21) the barred output is
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G(s) —_—
C(s) = [---1 E(s) (111-55)
S

The error signal in Figure 9 is

‘ E(s) = U(s) - H(s) c(s) (111-56)
Substituting (III-55) into (III-56) and solving for E(s) after

barring gives

A U(s)
E(s) = (111-57)

{ [ H(s) 6(s)
1+ —_—

Substituting (III-57) into (III-55) and expressing the result as an

x-transform give

Gg(x) U(x)
C(x) = (1171-58)

= Ve aaTg

1+ HR(x) GR(x)

where

H(s)
HR(x) = [ J (I11-59)
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For example, consider the system of Figure 9 with G(s) =1 / (s + 1),
H(s) =1 /s, and U(s) =1 / s. The sampling period is assumed to be
one second. It is desired to determine the output response, C(x).

The solution is as follows:

GR(x) =
s(s + 1)
-T
X -e x
- — (111-60)
-T
1 -e X
For T = 1 second,
0.632 x
GR(x) = (111-61)
1 - 0.368 x
Similarly,
[ H(s) ] 1] Tx
Ho(x) = % = % = (111-62)
R 2
3 s 1 - x
The x-transform of the input is
' 0
U(x) = % —_— = x (111-63)
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Substituting (III-61), (III-62) and (I1I-63) into (III-58) gives

0.632 x - 0,632 x2
c(x) = (I11-64)

1 - 1.368 x + x2

Taking the inverse gives

C(x) = 0.632 x + 0,232 x2 - 0.314 x3 - 0,662 xh
5
- 0.591 x* - ... (I11-65)
c(t) from (I11-65) is plotted in Figure 10,
1.0}
0,864
2.3T 0.232
1.632 | -0.314
0.6 2,550
.4t
0.632 _9.662
0.2
|~ 5
: 0 . L 1 .
v 9 T 2T 3T LiT -0.114 6T
-0.2t Time in Seconds
-0.4t -0.591
-0.6
{ -0,703

-0.8
-1,0¢

Fig. 10. - System output for the closed-loop system of Fig. 9.



51
The same system analyzed with the z-transform has an output

response of

1 3

Clz) = 0.632 27" + 0.864"2 + 0.548™> - o.114 274 - ... (111-66)
The values for (III-66) are also indicated in Figure 10, The

x=-transform analysis and the z-transform analysis give compatible

results.,

Signal Flow Graphs

Signal flow techniques have been appliied to sampled-data systems
and these techniques have been deScribed in the literaturell. The
extension of the sampled-data signal flow techniques to sampled-data-
hold systems is logical and can be accomplished under the existiﬁg
rules with the addition of the following rule:

In taking the barred transform of an equation,
all transfer-functions , such as G(s) in the forward

path of H(s) in the feedback path, are divided by s
and then barred.

function,

It should be remembered that in the barred notation or the x-domain,

the sampler and zero-order hold are treated as an entity. The steps
involved in obtaining the signal flow graph are:

(1) With the system block diagram as the starting point, the
''original signal flow graph' of the system is constructed.

(2) From the 'original signal flow graph'' the equations describ-

ing the '"sampled signal flow graph' are obtained.
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(3) The ''sampled signal flow graph' is constructed from the
describing equations in (2).

As an example, consider the system shown in Figure 11, The

s— e w— -y

= ;HE(S)’\/E"‘(S)- a(s) PR gy [Es)yextads o ) 163D,
= ' 1
T

T (S

Fig. 11. - Closed-loop sampled-data system.

“originaiksignal flow graph'" is constructed in the usual manner as

shown in the lower section of Figure 12. From this "original signal

L Q'

. J
T Y v, T
) R ) Yi=E G ) 1 .
u Y,=E 2=C ¢

Fig. 12. - Composite signai fiow graph of the sampled-data
system shown in Fig. 11,
flow graph,' the following equations are obtained:

Y = U - Y] G (111-67)

Y, = Y, & (111-68)
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where the '"function of &' notation in each term has been omitted for

simplicity. Taking the barred transform of (I11-67) and (III-68)

yields
_— - -7 G
Y] = U - Y] [-—~—] (I11-69)
s
— —T[%
Y2 = Y, (111-70)
s

The ''sampled-data signal flow graph'' is drawn from (111-69) and
(I11-70) and appears as the upper graph in Figure 12. In this example
the common node on the two graphs is ;: and the graphs are connected
at this common node. The composite signal flow graph of the sampled-
data system of Figure 11 is now complete.

From the composite signal flow graph the barred output is obtained

by the use of Mason's gain formula as

r 6(s) 1
SJ u(s)
c(s) = (111-71)
[16)
1 +
S
or
G U
) = B &) | (111-72)

1+ GR(x)
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The continuous output is

G(s) U(s)
C(s) = (111-73)
G(s)
1 +
S

As a second example, consider the system of Figure 9. The

composite signal flow graph is shown in Figure 13. From Figure 13

)

L

7] Y

ol

Y-

—

,/// A

1
r-Y S o
- [4

U Yy =E Y]:E Y2=C C

Fic. 13 - Composite signal flow graph for the system of Fig. 9.

the barred output is obtained as

e [“‘S)]

(111-74)
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or

U(x) GR(x)
C(x) = (111-75)

1+ GR(x) HR(x)

Equation (III-75) checks (III-58) which was derived directly from the

block diagram. The continuous output is

GT;; G(s)
C(s) = (111-76)

6(s) F(s)




IV, STABILITY OF SAMPLED-HOLD-DATA SYSTEMS

In the terminology of a linear continuous-data system the
definition of stability is civen as:

A system is stable if the output response
to any bounded input disturbance is finite,

It would seem that this same definition could apply to sampled-data-
hold systems since their outputs are piece-wise continuous. However,
the analysis of such systems is being accomplished through the x-trans-

form which, although it gives a continuous output, is a '""jump' analysis.
s ¢ g ] y

The output c(t) is equal to c(t) only at the sampling instants, c(nT).
Therefore, any stability tests on sampled-data-hold systems will be
conductaed with respect to the sampled output rather than the actual
output.

There must be an element of caution exercised in the application
of x-transform stability analysis, If the system response contains
hidden oscillationslB, then the x-transform method of stahility
analysis will lead to erroneous results.

Since all of the systems under analysis in this dissertation
contain a hold device, it is expected that the stability problem will
be more acute than in systems without such hold devices, The hold
circuit is equivalent to adding phase lag in the system and phase lag
is likely to have an adverse effect on the stability of feedback

control systems.,

56
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Consider the continuous and sampled-data systems shown in

Figure 14, For the continuous system to be stable, all of the poles

E(s) C(s)
——™G6(s) M———
e(t) c(t)
(a)
N —————
E(s) E*(s) E(s) C(s C*(s). 1C(s)
LN TASLy Sy
';z;;"i;’ | z.o.h_e.e..(.t.7 G(s) "Z%;%“/Ej Lf:?:?;
(b)

Fig. 14. - Continuous- and sampied-data systems.

of G(s) must lie in the left half of the s-plane; if any pole of G(s)
lies in the right half of the s-ﬁlane, the system is unstable. This
can readily be seen by taking the inverse Laplace transform of G(s);
a pole in the right half of the s-plane means that it has a positive
real part which indicates an ever-increasing exponential in the time
domain. Suppose that the sampled-data system of Figure 14b has no

hidden oscillations and that the x-transform method of analysis is

applicable. It can be said that such a system is stable if the output

response c{t) is bounded for a bounded inout, This statement must
be investigated concerning the placement of poles in the x=-plane,
If in the definition of the x-transform, s is replaced by
0~ + jw , the transformation of the stability boundary in the s-plane

onto the x-plane may be observed. Hence,

e-(d’ +jW )T
x = (1v-1).

[ jw
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Letting 0 = 0 and w take on values from zero to infinity, it is
found that the jw axis in the s-plane transform; onto a spiral in
the x-plane as shown in Figure 15, Furthermore, the shape of this

spiral depends on the sampling period T.

} i AIm

. Re

~
\_J

(a) (b)

Fig. 15, - Transformina the jw axis of the s-plane onto the
x-plane.

This means that the actual use of the x-plane for stability
studies is undesirable. However, for closed-loop systems, the

stability depends on the location of the roots of the characteristic

equation
1+ (GH)R (s) = 9 (1v-2)
It must be remembered that R(s) is not G(s) but

1 - e-Ts

R(s) = Q(s) 6(s) = | ——1] G(s) (1v-3)
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or
o
R¥%(s) = Z OR(nT) [e-nTS - e-(n+l)Ts] . (1V-L)
n=9
where
G(s)
GR(S) z — (IV-S)
s
By definition
) G{s) A(s)
(GH)R(S) = —_— (1v-6)
s

Thus, in light of (IV-2) and (IV-4), coupled with the indication
in (I1I-18), a transfer function in the x-domain is a function only

of the pseudo x-transform, x , which is defined as
p

e : , (1v-7)

and the stability analysis can be performed in the xp-plane. Using

the x notation, (IV-2) can be written as
P

|+ (GH)R (xp) = 0 - (1v-8)
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The stability boundary in the xp-plane must be determined. It
is known that the jw axis in the s-plane maps onto a unit circle

centered at the origin in the z-plane. From (IV-7) it is observed that

X = e (1v-9)

The transformation (IV-9) sets up a one to one correspondence
between points in the z-plane and points in the xp-plane, except for
the points z = 0 and x = 0, which have no images.

In polar coordinates (IV-9) becomes

Pej¢ = — i€ ' (1v-10)

Equation (IV-10) can be described by the consecutive transformations
1 )
2 = — &9, x = 7 conjugate (Iv-11)

The first transformation in (IV-11) is an inversion with respect to

the unit circle r = | (See Figure 16). The point z/ lies on a
z

Fig. 16. - Transforming the z-plane onto the xp-plane.
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radius drawn through the point z, and its distance from the center is

such that
|z'| |z| = 1 (1v-12)

The second transformation in (IV-11) reflects 2z across the real
axis.

This says that points outside the unit circle are mapped into
points inside the unit circle and conversely. Points on the unit circle
are simply reflected across the real axis.

From the preceding it is seen that the stability boundary in the
xp-plane is the unit circle centered at the origin. Therefore the
stability analysis can be accomplished completely in the xp-plane

provided that the results are interpreted as follows (see Figure 17):

Stable xp-Plane

Fig. 17. - Pseudo x-plane showinc stable and unstable regions.

(1) Points outside the unit circle are in the stable region.
(2) Points inside the unit circle are in the unstable regicn.

(3) Points on the unit circle indicate sustained oscfllations.
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Stability of Sampled-Data Systems
Through the Xp-Transform Analysis

It has been shown that xp maps the left half of the s-plane onto
the exterior of the unit circle l xpl = 1 and it maps the right half
of the s-plane onto the interior of the unit circle lxpl = 1. The

important definitions in this mapping are repeated as

xp é pseudo x é e ST (1v-13)
; b esT (1v-14)
1
Xy T — (Iv-15)
z
Then for s = ¢+ jew ,
X, = e 0T -jeT (1v-16)
If 6 = 0, the jw axis of the s-plane maps onto the xp-plane as a

unit circle in the manner shown in Figure 18.

It should be observed from Figure 18 that traversing up the jw
axis (W increasing) is equivalent to going clockwise around the unit
circle in the xp plane.

It can be stated now that the necessary and sufficient condition

for a sampled-data feedback system (where it is understood that all
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4j e | Im
4:3mr Xp-Plane

1.2 —— ' U=(2n+-%)1!"-_

(a) (b)

Fig. 18. - Mapping the jw axis of the s-plane onto the xp-plane.

samplers are followed by zero-order holds) to be stable is that all
the poles of the over-all transfer function, C{(x) / U(x), which is a

function of only xp, lie outside the unit circle in the x_-plane.

p

As an alternate statement: The necessary and sufficient condition
for a sampled-data feedback system (same configuration as above) to be
stable is that all the roots of its characteristic equation in xp must
have an absolute value greater than one.

The stability tests that will be investigated under the
xp-transform method are:

(1) The Routh-Hurwitz Criterion

(2) The Nyquist Criterion

(3) The Bode plot

(4) The Gain-Phase plot

(5) The Root-Locus plot
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The Routh-Hurwitz Criterion

In attempting to apply the conventional Routh-Hurwitz criterion
to sampled-data systems, it is seen that difficulties arise immediately.
If the barred notation is used, the complex variable s appears and the

equations are transcendental in s, Routh-Hurwitz applies only to

algebraic equationsth.

The following definition from Sokolnikoff and Redhefferls

might

aid in understanding the problem,

1

A polynomial equation y" + a y 7T L a, =0

is called an algebraic equation. An equation F(y) = 9

e . e TowE v B . . *
which is not reducible to an algebraic equation is called
transcendental., Thus, tan y-y = 9 is a transcendental
equation, and so is ey + 2 cos y = 2.

Difficulty also exists in the xp-plane because the boundary of
stability is the unit circle pr| = 1 and not the imaginary axis.

However, this problem can be circumvented by mapping the interior
of the unit circle in the xp-plane onto the right-half plane of some

other complex variable plane by a bilinear transformation such as:

xp = or x = (1v-17)
D
1 +a £+

Either transformation maps the interior of the unit circle in the

xp-plane onto the right half of the & -nlane or ﬁ?-plane, as the case

may be, For a given value of xp,

ad = (1v-18)

1
&
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Once the transformation has been accomplished, the Routh-Hurwitz
criterion may be appliied directly to the new equation in the variable
a orjg . |
As an example of the application of the Routh-Hurwitz criterion

to a sampled-data system, consider the system shown in Figure 19,

U(5)+i( )E(S)/x E*(S)" zoh E(s) G(s)—s(§+ﬂ C(S)lilt'iﬁ‘:r-z-;; I-C—-—’-zs)
T

T=1 sec. l----l'

Fig. 19. - A sampled-data system with unity feedback.

It is desired to determine the limits on K for stability. The

characteristic equation is

1 + GR(xp) = 0 (1v-19)

[2)
-~
x
S
1
o=
[ S a—
%)

N.264 xi + 0.368 x
= K i P (1V-29)

) 2
1,368 X - 1.368 X5 + 1

Substituting (IV-20) into (IV-19) and simplifying yield
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(0.368 + 0.264 K) xg + (0.368 K - 1.368) x, v 1= 0 (1v-21)

Substituting the & transformation of (IV-17) into (IV-21) and

simplifying give
0.632 K B2 + (1.264 - 0.528 K)f+ (2.736 - 0,106 K) = 2 (1v-22)

The Routh’s array, which is determined from (IV-22), is

2

ﬁs 0.632 K (2.736 - 0.194 K)
ﬁg‘ (1.264 - 0,528 K)

0
/3 (2.736 - 0.104 K)

The Routh-Hurwitz criterion states that a system is stable if the
elements in the first column of the Routh’s array are all positive
(or all negative). Therefore, for the system of Fiqure 19 to be stahle

the following conditions on K are required:

K >0
K < 2.4 (1v-23)

It may be said that the application of the Routh-Hurwitz criterion

in stability studies of sampled-data systems is straightforward. The

b
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feasibility of the method, which depends on the use of a bilinear trans-
formation, is determined by the order of the system under study.
Higher order systems may require more labor than the result warrants.
It is well to remember that the Routh-Hurwitz criterion tells nothing

about the degree of stability.

The Nyquist Criterion

The Nyquist path

The Nyquist path in the s-plane for continuous-data systems is
shown in Figure 20a. The Nyquist path in the xp-plane is shown in

Figure 20b.

Aj o Trlm
X,-Plane
P S-Plane 1 p
1114
9
: IV I ),
“‘{I 6 T » 1 o
\ 3
8
I3 111
(a) (b)

Fig. 20. - The Nyquist path in the (a) s-plane (b) xp-plane.

The gp-transform method

The Nyquist plot of G (x ) is a plot of G_(x ) as x takes on
e Nyqu p R( p) p R( p p

values along the Nyquist path in the xp-plane, which is the unit circle

with center at the origin.
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The net number of rotations, N, of 1 + GR(xp) about the origin
of the 1 + GR(xp)-plane is equal to its total number of poles, P,
minus its total number of zeros, Z, inside the unit circle in the

xp-plane. Thus,

where counterclockwise rotation is defined as being positive and

clockwise rotation as being negative.

As is normally done in a Nyquist analysis, the critical point
is made at (-1, 0) instead of the origin. This is accomplished by
shifting the imaginary axis one unit to the richt and observing
GR(xp) rather than 1 + GR(xp).

For a stable closed-loop sampled-data system, the Nyquist
criterion states that the Nyquist plot for GR(xp) will encircle the
(-1, 0) point of the GR(xp)-plane in a counterclockwise direction
such that the net number of encirciements will be equal to the number

of poles P that lie inside the Nyquist path in the xp-plane. Thus,

If the system is open-ioop stabie (P = 0), then the criterion

simplifies to

and GR(xp) should not encircle the (-1, 0) point at all.




69
It is concluded from the preceding statements that the application
of the Nyquist criterion to a sampled-data system is an investigation
of the behavior of the Nyquist plot of GR(xp) with respect to the
(-1, 0) point. If the plot can be constructed, then the application
can be made.
As an example, consider the sampled-hold-data system with a loop

transfer function of

6(s) = o (1v-2)
o s(s + 1)

For T = 1 second

G(s) K
;GR(x) = ;K R = ?( —ee (Iv-25)
o s s2 (s +1) -

or

0.264 x2 - 0,368 x

GR(x) = (1v-26)
(1 - x)(1 - 0.368 x)
Since GR(x) is actually a function of X only, one obtains
6 (x) 0,264 x> + 0.368 x
R p [ ] p L] p
= (1v-27)

K (1= %) (1 - 0.368 x,)
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i From Figure 20b the relations between points on the unit circle in the

xp-plane and points on the jw axis in the s-plane are obtained as

| . Ws
: X, = 1 -90 W = n(ds+
’ ’ L
\l o ZIA)S
’ Xp = 1 { -189 W = nws+T
- (Iv-28)
' x, = / -270° W= nw + us
|
L&
{ o s
xp = 1 -360 W= nms+T
Evaluating (IV-27) by (IV-28) gives
‘K".GR(-j) =03 [ -9°
-1
K GR(-I) = -0,038
(1v-29)

.."] - 2N - - <
Ko G () = 0.3 / -

8

K 6, (1)

The points (IV-29) along with some supplementary points are plotted
in Figure 21,
In order to complete the Nyquist plot of GR(xp), the section

of the Nyquist path in the xp-plane corresponding to Section II
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(points 1, 2, 3 in Figure 20b) should be considered. Figure 22 gives

¢ =90°

X . ~-Plane

&—r0

‘ ¢
¢=180° @ \ - | ¢ =0°

¢=270°

Fig., 22, - Section II of the Nyquist path in the xp-plane.

an enlarged view of the indention in the Nyquist path. The points in

this section may be represented by

where & tends to zero and 93° € ¢ S 270°, Substituting (IV-39)
into (IV-27) gives
. '2
[0.26L+ (1 + 2e63® & €2 29,

+ 0,368 + 0,368 ¢ vej‘> ]
K GR(xp) = (1v-31)

-c ejtb (0.632 - € ejd, )




73

Since ¢ —»0, then (IV-31) may be written as

i .
K1 = - — oi® (1v-32)

GR(xp) =
Therefore, the magnitude of K-] GR(xp) on Section II of the Nyquist
path approaches infinity and as ¢ varies from 90° through +180° to
270° in a counterclockwise direction, K'] GR(xp) varies according to
(1Iv-32) through a rotation.of 180° in a clockwise direction about the
origin of the GR(xp)-plane. This section of the Nyquist plot is also
shown in Figure 21,

It should be noted from Figure 21 that the critical value of K is

1 .
K. = — = 2,bh4 (1v-33)
' 0.4

This value checks with the value obtained through the Routh-Hurwitz
analysis of this same system. The gain-and phase-margins for this

system as determined from Figure 21 are 7.5db and 310 respectively,

The bilinear transformation method

The same plot obtained in Figure 21 may be obtained under the

bilinear transformations

B | 1 - a

or x = (1v-34)

[eN)
+
o
+
b~ 3

Substituting (IV-34) into (IV-27) and simplifying give
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-1 A-1 0.5( /3 - 1.0)( B+ 0.165)
R o - | (1v-35)
B+ (B + 2.16)

Let ,8 = jwp » where Wg is the imaginary part of ﬂ. Then,

-1 ~0.0382 (1 - jwga )(1 + j 6.06 wg )
K GR(j Wg) =

(1v-36)
1 +j 0,463 Wg '

Plotting (IV-36) gives the results shown in Figure 23, which is the

same plot as shown in Figufe 21,

Relationship between frequencies

Using the bilinear transformation

A-

X

= [ (IV'37)
p
ﬂ + 1
one finds that
T+ x
ﬂ = P (1v-38)
1 - x
p

However, for real frequencies
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iWT
and
f = ius
Substituting (IV-39) and (IV-40) into (IV-38) gives

1+ e-J&)T

J'Up =
. -ild
1l -e ? T

Simplifying (IV-41) gives

: WT
:“A=>'C°t ——-—-

In a similar manner it may be shown that

8T
L& = tan e

2

Equations (IV-42) and (IV-43) give the relationships

Wg , and Gy . Implicitly included is W_ = 2]/ T.

(1v-39)

(1v-40)

(Iv-41)

(Iv-b2)

(1V-43)

between &,



77

The Bode Diagram

The Bode diagram is constructed in the same manner as in continuous
data systems once the bilinear transformation has been made.
As an example, consider the system described by (IV-24) which has

an open-loop transfer function of

G(s) = (1v-44)
s(s + 1)

Under the bilinear transformation X, = (B-1) /(B+1), the

equation from which the Bode piot is constructed is

-0,0382 (1 - j 273 Y(1 + j6.96 w,, )

. ‘
K GR(J w,g) = (Iv-45)

1 +j 0,463 wg

where T has been assumed one and 3= j¥g . From (IV-45) the corner
frequencies are at Cdﬁ = 2.16, 1,0, and 0.165. The dc gain is
-28.36db. The Bode plot is shown in Figure 24, The marked indications
of gain margin and phase margin are equal to those obtained from the

Nyquist diagram of the same system (See page 73).

The Gain-Phase Plot

The gain-phase diagram may be constructed directly from the loop-
gain expression or from the Bode plot. It is a diagram for the open-

loop transfer function, GR(xp), magnitude as a function of phase
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FIG, 25, = Gain-phase plot for G(s) = <G
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The Root Locus Method

The root locus technique has become one of the most popular methods
available for analysis and design of linear control systems. It has
been shown previously that the location of the potes and zeros of the
closed-loop transfer function C(xp) / U(xp) completely determine the
stability and transient response of each sampled-data system. Further-.
more, the closed-ioop xp-transfer function is a rational function of |
xp and the characterisfic equatidn of the system shown in Figure 19 is

an algebraic equation in xp. This characteristic equation is
=0 -6
1+ GR(xP) 0 | (1v-46)

The construction of the xp-plane root locus is straightforﬁard
since the same rules which apply for the conventional root locus
diagrams are also applicable to the xp-plane loci. The rules of

construction are based on the following conditions:
(1) 'G ( )' 1 (1v-47)
X = -
| R*7p I .

(2) {GR(x ) = 180° + k(360°) (1v-48)

where k = 0, + 1, *+ 2, ... all integers.

The rules and their proofs may be found in most standard textbooks on

feedback control systems..‘6



82
As an example, consider the same system used in the previous

stability study methods. This system is redrawn in Figure 27. Since

——
uls) \ E(s) T_]'—"*(s) zoh E(s), (s)_s(:H) el /{@‘ﬁg)i zoh E-C_.GI’
=1 sec. Lewod

Fig. 27. - Closed-loop sampled-data system,

the system has unity feedback, H(s) = 1, the characteristic equation is
1 + GR(xp) = 0 | (1v-49)
The open-loop xp-transfer function is

0.264 xg + 0,368 x,

(1v-50)
(1= x)(1 - 0.368 x.)

for a sampling period T of one second. The root loci of the system
are plots of the roots of (IV-49) when K is varied from zero to
infinity (K may also be negative)., Equation (IV-50) has poles at
Xp = 1 and Xy = 2.72 and zeros at Xp = 0 and X ==-1,39. From the

rules for root locus construction, the root loci plots may be drawn

as shown in Figure 28,



—3t—rRe
2,72
Fig. 28. - Root locus plot of the sampled-data system
shown in Fig. 21.
The loci start from the poles xp = 1 and Xp = 2.72 and terminate

on the zeros Xp = -1.39 and xp = 0. The breakaway points are located

by the following procedure:
(I)A Write the characteristic equation as
K = f(xp) | (Iv-51a)
(2) The breakaway points are the roots of

dk

= 0 (Iv-51b)

Therefore, the breakaway points for this example are at Xy = 1.512

and xp = -0.472. The marginal gain, K., may be determined graphically

.
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or from (IV-49)., Rearranging (IV-49) gives

1 - 2.72 -
o - ' "pl I Xol (1v-52)
pr| | % + 1.39
where
Kt = 0.717 K : (1v-53)

The critical value of gain is that value of K at the point where the
locus enters the unit circle. From Figure 28 the magnitudes of (1v-52)

may be determined giving

(2.7)(1.2)
KY 2 —— = 1.73 (1v-54)

(1)(1.87)

K = = = 2.42 (IV-SS)
0.717 0.717

It is obvious from Figuré 28 that the lower limit on K for a stable

system is K = 0, Therefore, for a stable system

V<< K< 2,42 (1v-56)
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The gain at any other point on the locus may be determined in a similar
manner.
An interesting point is seen from Figure 28. For a two pole,
two zero configuration the complex conjugate section of the root loci

is a circle. This may be proved as follows:

Let x_ = x + jy (1v-57)

Then (IV-51) becomes

2
K|0.264 (x + jy)™ + 1,368 (x + jy)
GR(xp) = [ ] (1v-58)

(1 - x = jy)(1 - 9,368 x - j 0,368 y)

Condition (2), equation (IV-49), specified earlier for root loci

construction, states that

, {GR(x ) = 180° + k(360°) = (2 + VT (1V-59)

Equation (IV-58) may be written partially in view of (IV-59) as

m+n

{GR(xp) = {2 {x -z, - JZ::] {xD - p. (1v-60)

i=1

where z, indicates zeros and pj indicates poles of GR(xp). Therefore,

-1 0.528 x y + 0,368 y
{ GR(xp) = tan

7.264 x2 - 0,264 y2 + 9,368 x

| 0.736 x y - 1.368 y (1v-61)

- tan’

1 - 1,368 x + 1,368 x2 - n,368 y2
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Taking the tangent of both sides and using the identity

tan a - tan b
tan (a + b) = (1v-62)

1 + tan a tan b

give

[ 0.528 x y + 0,368 y

0.264 x% - 0.264 y2 + 1,368 x

0.736 x y - 1,368 y ]

I - 1.368 x + 0,368 x> - 0.368 y>

tan !GE(x ) = (1v-63)

0.528 x y + 0.368 ¢

2 2
L 0.264 x™ - 0,264y + 0,368 x|

[ N.736 x y - 1.368 y
1 - 1.368 x + 0.368 x> - 0.368 y2

Now

tan (GR(x ) = tan (2k+ DT = (1v-64)
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Simplifying (IV-63) by (IV-6L) qgives
2 2
(x - 0.543)° + 1.0y~ = 1,298 (1v-65)

This is the equation of a circle with center at (0.543, 0) in the
xp-plane and a radius r = 1.14,

From the preceding example it is seen that the root locus plot
in the xp-plane for a sampled-data-hold system may be made just as
in the continuous case. Because of a different region of stability,
a different interpretation must be placed on the resultant diagram,

The stable region is the area outside the unit circle.



V. RESPONSE OF SAMPLED-DATA SYSTEMS
BETWEEN SAMPLING INSTANTS

The x-transform analysis has been developed around a combination
circuit including an ideal sampler and a zero-order hold. The output
of such a combination approximates the unsampled output of the system
closely if the sampling rate is sufficiently high. The output‘of a
sampled-data-hold system is equal to the unsampled system output only
at the sampling instants; it is an approximation between sampling
instants. In order to get a complete déscription of the system, it
is necessary to know something about its behavior not only at the
sampling instants but also between sampling instants. The two methods
that will be investigated for determining the system behavior between
sampling instants are the submultiple sampling method and the modified

x-transform method.

Submultiple Sampling

OEen-looE

One approach to the evaluation of system outputs between sampling
instants may involve the use of a fictitious sampler-hold at the output

17 The

of the system whose period is a fraction of that at the input.
general theory considers the case where the output sampler is operated
at a period T/h, n being an integer, and the input sampler is operated

at a period T.
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In order to gain a basic understanding of the principles of
submultiple sampling, the specific case of a double-rate output sampler

will be considered. The system shown in Figure 29 is to be investigated

.

Since E(s) is constant between sampling instants, the presence
of the fictitious sampler in the input does not affect the original
system. At alternate sampling instants the input samplers operate

simultaneously. Between these sampling instants the fictitious

sampler merely samples E(s) and holds it until the two samplers again

operate simultaneously (see Figure 30).

'

E(s) and E(s)

[

i
!
l
|
1
1
t
) §

- - —

2 'y

0 T/2 T 3T/2 21 51/ 3T 7T/2 41
Time in Seconds

Fig. 30. - Results of a sampler with period T followed
by a sampler with period T/2.

While the use of the double frequency sampler on the input does
not alter the input to G(s), it does sugcest that a change of variable

might be useful. This new variable is defined as

e-(T/?)s

1

(v-1)

S
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From (V-1) it is seen that

2 x2p (v-2)

However, once again, it is not necessary to differentiate between x

and X5 and (V-2) may be expressed as

(v-3)

Therefore, in view of (V-3), it is seen that the input to G(s) is

o] = eod (V-1)

The input can now be expressed in terms of the double-rate variable

X, by merely replacing all the x's by xg

The double-rate output x-transform is related to the input

double-rate transform by
Clx)) = G (x,) E(x?) (v-5)
2 R'"2 2

where

=

/K G(s) (v-6)

— X
X 2

T—~T/2
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Equation (V-5) may be developed from the block diagram of Figure 29b

as follows:

cy)(s) = 2 (s) € (s) (v-7)

Ry(s) 2 Q(s) 6(s) (v-8)
and

Cfs) = 6(s) Q,(5) E (s) | (v-9)

Starring (V-9) after substituting (v-8) gives

C;(s) = R(s) E:(s) (v-10)

where the subscript indicates that the sampling period is T/2.

-
Substituting (V-10) into (V-7) yields

e ——

Cz(s)

Qz(s) E:(s) R;(S)

E,(s) R:(s) | | (V-11)

However, the input sampler operating at a period T/2 does not affect

the input to G(s) and (V-11) may be written as
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cz(s) = E-(s_)R:(s) (v-12)

Under the definitions given in Chapter III for the open-loop transfer
function and equation (V-L4), one may write (V-12) in the x-transform

notation as

Clxp) = EG) G (x,) (v-13)

As an example of the application of the submultiple sampling
method for determining the output between sampling instants, consider
the system of Figure 29b with G(s) = 1/(s + 1) and E(s) = 1/s.
Determine the outéut at t = 0, 0.5, 1.0, 1.5, 2 ... seconds when

T = 1 second. The solution is as follows:

G(s) 1 -
) = K| =) = W|——| - 2= wm
s s(s + 1) 1 - e'T X
and
X, - e'T/é X5
6y (xp) = (v-15)
, -T/2
- e X,

The input is
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From (v-2)
0 0 O
X = X X
0
But x =1, Then
2p
2 0
E(xz) = x2

Substituting (V-15) and (V-18) into (V-13) gives

0.394 x
tlx,) = %2 2 ]

2
‘ - 03606 Xz

Taking the inverse x-transform gives

- 2 3
C(XZ) = 0,39 x2 + 0.239 x2 + 0,145 x2

L

+ 0.088 X,

+ 0.053bx; + e

Cz(t) is obtained from (V-20) and plotted in Figure 31.

(v-16)

(v-17)

(v-18)

(v-19)

(v-20)
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1.00}
0.866 [ga
9,778 [0.088 °°
0.75 0.633 . 145
‘.) 3
F;“ 0.50 0.394 0.239
(8]
0.25% .
0 0 A A i 1 K3
0 T/2 T 3T/2 2T 5T/2 3T

Time in Seconds

Fig.‘ 31, - Submultiple sampling with Te=T/2 and x——y-x;.

It is apparent from the doubie-rate case previously considered
that an n-rate case may be given. In general, the submultiple rate

sampling method for the open-loop system is determined by

Clx) = E(x:) 6 (x ) (v-21)
where
GR(xn) = GR(x) (v-22)
X——-v-xn
T—T/n

and
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ti

E(x) = E(x) i (v-23)
n XX

The number of additional sampled values, q, desired between

any two consecutive sampling instants is determined by n = q+ 1.

Closed-loog

The application of the submuitiple sampling method for evaluating
the response between sampling instants of a closed-loop system is
similar to that for an open-loop system. Figure 32 shows a closed-
loop system with fictitious sample-hold circuits included. The sampler
on the input operating with a period of T/n seconds does not alter the

fnput to G(s) (see the open-loop analysis on page 99).

Vo
-e—— ————— '- -

|

A G S 1 1)

Lo _-..- ———— l———

| )‘T 148 e

b e e oL

% () LEx(s) E_(s) €ns)
MQE(S) /YE (S) Q(S) c_fvs%_/rL__’. Qn(s c?"n) G(S) n -
T =\AJ T/n I;\""

Fictitious Sampler-Hold

H(s)

Fig. 32. - Closed-loop sampled-data system showing fictitious
samplers which aid in determining the response between sampling
instants.

The fictitious sampler at the output gives
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Clx,) = E(x) Golx,) (v-24)

where E(x:) is the ordinary x-transform with x replaced by x: and
GR(xn) is the ordinary x-transform for a transfer-function with x
replaced by x and T replaced by T/n.

The output of the fictitious sampler-hold on the input is

n
E(x,) = U(x:) - E(x:) (GH)R(x:) (v-25)

‘ n
Solving for E(xn),

U(x:)

E(x) = (V-26)
n

1+ (6 (x)

Substituting (V-26) into (V-24) gives

U(x:)

C(x ) = G (x) (v-27)
n K n

1+ (GH)R (x:)

where

(GH)p (x) = (6H) (x) (v-28)

X e X

and
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i&i H(s) G(s)

S

il

(GH)R (x)

Consider the system of Figure 32 with G(s) = 1/s(s + 1),

(v-29)

H(s) = 1 and T = 1 second. It is desired to find the output response

at two additional instants (equally spaced) during each sampling

period if the input is a unit step function. The solution is as

follows:

G (¥)

i
(2
17, ~~
(7]
St
]
7]
N
L)
w —_
+
A

-T 2 - -
x (T-e -1)+x (1 - e T T -e T)

-T -
1-(1+e )x+e T x2

Determining GR(XB) from (V-30) gives

-0,
[x3 (0.333 + e 333 - 1)
2 -2.333 -3.333
+ X3 (1 - 0.333 e - e )
GR(X3) ) 0 )
(s &35 (e x;

or

(v-30)
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2
0.05 x4 + 0. 44 x
Glx,) = 3 3 (V-31)

2
1 - 1,717 x3 + 3.717 x3

The input is a unit step; therefore

U(x) = xO

and

U6 = xg | (v-32)

Using (V-30)

, , 0. 26l xg + 0.368 xg
(GH)R (x3) = GR(x3) = (v-33)

6
006 - 3 8 3
368 X3 1.36 X3 + 1
Substituting (V-31), (V-32) and (V-33) into (V-27) qives

2
n,05 x3 + 0,044 x3 ,
2 "3
1 - 1,717 x5 + 2,717 x

3 3

]

(v-34)

C(x3)

9,264 xg + 0,368 xg

0.368 xg - 1.368 xg .
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Simolifying (V-34) yields
C(x3) = 0,750 x3 + 0,13 x§ + 2,187 xg + 1,209 xg
5 6
+0.207 x5 + 0,208 X3+ e (v-35)

The coefficients of x;, x3, xz, ... which correspond to the output
at t =T, 2T, 3T, ... may be checked with the results for the output

of this same system in Chapter III, page 45.

The Delayed X-Transform

The result of a delay factor in the x-transform theory was

shown in Chapter II, page 24. This delay factor or shift is

Afett - a1 ule - 1] = X" E(x) (v-36)

where n is an integer. Suppose that the delay is kT where k is not

an integer and suppose that the samplinc instant remains unchanged;
that is, the sampling and hold occur at t =9, T, 2T, ... , but the
delay is not necessarily an integral number of sampling periods.
Figure 33 illustrates this condition., The sampled-hold delay sequence
mayvbe represented by

e(t - kT) =
0

}E: e(nT - kT) [u(t -nT) -u [t - (n+1) T] ] (v-37)

n=0
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~ /—e(t-kT) u(t-kT)

Yy

o
x

T 2T T Lt

Time in Seconds

Fig. 33. - Delay function and pulse sequence of delay function.

where k is a noninteger and n=92 1, 2, 3, «v. . It is assumed that

k can be represented as the sum of two quantities. Let
k = p+gq (v-38)

where p is the largest integer less than k and q is a positive number

less than one. Equation (V-37) becomes

e (t - kT) =

o)
' zg: e(nT - pT - qT) [ u(t - nT) - u [t - (n+1) T]_] (v-39)

n=0

Taking the x-transform of both sides of (V-39) gives

PRy

i
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- (o]
;([e(t - kT)] = xP ‘jgi e(nT - qT)(xn - xn+]) (v-40)
n=0

Since there is no additional information gained by delaying an integral

number of sampling periods, p is set equal to zero. Equation (V-40)

then becomes

o0
QZ[e(t - qT u(t - qT)] = zi: e(nT - qT)(x" - xn+l) (v-b41)

n=9

Equation (V-41) will be referred to as the defining equation for the

delayed x-transform of e(t) and denoted by

e0, a) & Y[ elt - an ult - qn)] (v-42)

If g = 0, then there is no shift and the summation over n in (V-41)
is from zero to infinity; however, if q is other than zero, then the
summation is from one to infinity.

As an example, it is desired to determine the delayed x-transform

: -at
for a time function e that is delayed by 0.5 T seconds. Using

(Vai1)

E(x, q = 0.5)

"

%[e(t - 9.5T) u(t - “-.ST)]
(oo}
)3

e-a(nT - J.5T) (x" - x”*’) (v-43)
=0

3




103
It should be noted that the function is zero until t = 0.5T; there-

fore, the summation should be from n = 1 to infinity. Thus,

o0
2{: e-a(nT - 0,57) (xn _ xn+])

E(x, 2.5) =
n=1
N - - -

= (x -x)e 7.58T (x + x2 e aT | x3 e 2aT cee)
(x - xz) e-D.SaT

- (v-Lk)

-aT

1 -e X

The inverse of (V-4k4) is plotted in Figure 34 along with the

continuous function for comparison.,

3
1.00 '\/—e(t-o.ST) u(t-1.5T)
'\
= 075 ! S
u: \ \\ 0,606
o L}
SRR SR AN
\; oo | _0\.382
~~ ! *
\

& o3 R
2 b lleos TTE
- | e
\q; 9 l . . N 1 .

) 5T T 27 37 bt o7 T

Time in Seconds

Fig. 34, - Comparison e(t) = e 2t delayed by 2.5T and
%[e(t - 0.5T) u(t - O.ST)] .
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The Modified X-Transform

OEen-looE

The system shown in Figure 35 is an open-ioop system with a

' C;"“(JJ7S) C{q,s)
E(s) "“(S)I E(s) C(S) ' -qu '_(g_,_s_) ‘\ l

Q(s) G(s) [ ™
T : a____J

Fig. 35. - Open-loop system with fictitious time delay e 9

fictitious time delay inserted at the output. The fictitious time
delfay is not a part of the system; it is added merely as a convenience
for allowing the determination of the output response at times other
that the sampling instants. The definition of q is the same as in
the delayed x-transform analysis.

It is assumed that the fictitious delay is grouped with G(s)

and the following definition is made:

>

G'(s)

By the same block diagram manipulations as are shown in Chapter III

for the open-loop case, it can be shown that

——————

C(s, q) = ‘EZ-ST R*(S’ q) (v-46)

or
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C(x, q) = E(x) GR(x, q) v (v-47)
where
A % G'(s)
6r(x, @) 2 L] — (v-18)
s

At this point a change in the delay nomenclature may be made. Let

q = 1 = m ’ ) (V-h9)

Then

C(x, m} = E(x) GR(x, q) (v-50)

Since q is a number between zero and one, m is also between zero and

Lo oo ee e

one. Therefore, using the deiay theorem

GR(x, m)

G, (x, q)
R qg = 1 -m

1

_ |
x Z 9g [(n + m) T] (" - X" (v-51)

n=0
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where the rule for taking the x-transform of a transfer function carries
over to the modified x-transform. The modified x-transform, E(x, m),

is given by

. >
:X"'[e(tq = E(x, m) = x e [(n + m) T] .
n=0
6" - (v-52)

It should be noted that the modified x-transform involves a
delay and fherefore thefe will never beran x? term in the output
response of C(x, m). An example will illustrate the modified x-trans-
form-method. It is desired to determine the output response of the
system of Figure 35 at t = 0.5, 1.5, 2.5, ... with G(s) = 1/(s + 1)
and a unit step input. The solution is as follows:

Using (V-51), the transfer-function transform is

[ 6(s)
-’R(xs m) = /,Xm .l
[ s ]
A [
LS(S + ])

Ao o -7 (v-53)

which from (V-52) becomes




(x - xz) e
Gplx, m) = x - (v-54)
-T
1 - e X
or
x(l -- e“'mT) + x2 (e"mT - e'T)
GR(x, m) = (v-55)
-T
I - e X

In order to get the output response at t = 0.5, 1.5, 2.5, ... , (V-50)

will be used with m set equal to 0.5. The input is a unit step,

therefore 4L [u(t)] = x0 and T is assumed to be one. Then

" C(x, 0.5) x0 G (x, 0.5)

0.394 x + 0.238 x2

1 - 0,368 x

= 0.39% x + 0.383 x + 0.1 x” + .., (v-56)

c(t, 0.5) is obtained from (V-56) and plotted in Figure 36 along with

c(t, 1) and c(t, 0). It should be noted that

c(x, 1) c(x) [if e(0) = o] (v-57)

and

C(x, 0) x C(x) (v-58)"
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19 1.950
1.99 0.864 0.918‘.'_—9—5—.
heot e y—
0.777  |Pe1H |
0.75 | 0.632 : |°'232
:._'. ------- 8 —-i—..-_-———— C(X,OOS)
’; ! E 0.3 3' ______
g 0.50 0.39 I Clx1)
' | - —C(x,0
9.25 | 5 p+632 Y
o 0.394i ;
0 i l . :
0 T 27 3T H‘f T

Time in Seconds
Fig. 36. - C(x, m) for step input and G(s) = 1/(s + 1), T = 1.

A modified z-transform analysis for this same system gives
C(z, 0.5) = 0.39k 27!, +0.777 272 + 0.918 273 + ... (v-59)

These values are also indicated in Figure 36.

Evaluation of some modified x-transforms

Determination of the modified x-transform of the time function

u(t). - By definition

———

X [uc]

E(x, m)

e [(n + m)T] (x" - xn+])

78

3
1
O

u [(n + m)T ] (x" - x"

s

3
i
)
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"

X (x0 - X + X - x2 + x2 -~ eee )

jk;l[u(tﬂ

= X (v-60)

Determination of the modified x-transform of the time function

e Y. Using (V-52) gives

o

N ZE: e-a(n +m)T (x" - xn+])

n=0

3
—
o
'
[J]
+
—_—
1)

-amT 0 aT ~-2aT 2
X e (x e +

- x)(1 + e " x4+ X + e0. )

e == (v-61)

Determination of the modified x-transform of the time function

(1/a) [t - (1 - e-at)/é] . - Taking the transform of the sum gives
F ) g

y 1 l-e-at
—_— (t e ——— )
m a a

"
3
| -
§
3
c
<
+
et
+
—
3
o
]
N (V1]
~+

1)
3
|
x
+
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] - e
CX\ — (t - )
m a 5
1 mT (x - x2) + Tx2 x e-amT (x - xz)
- - + (v-62)
a 1 - x a a (1 - e 27 x)

Closed-looE

A modified x-transform analysis of a closed-loop system may be

made using the system shown in Figure 37. From this block diagram

L___,..____.__:_':_‘___I
U E £ E c (1. iC(s,m)
(s)t (s) ,)(’ (s) a(s) (s), 6(s) (s) ~emTs | erS T
T Fictitious
Time Delay
H(S) * e(]-m)TS €

Fictitious
Time Advance

Fig. 37. - Closed-loop sampled-data system with fictitious
time delay and advance.

the following equations may be written:

C(s, m) = G'(s) E(s) (v-63)
where

6'(s) = G(s) e (1 = mTs (V-6L)

The error signal is
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E(s) = U(s) - H'(s) C(s, m)
where
(1 = m)Ts

H'(s) = H(s) e

Substituting (V-63) into (V-65) gives

E(s) = U(s) - H'(s) G'(s) E(s)

Taking the barred transform of both sides gives

H'(s) G'(s)
E(s) = U(s) - [-——-—————-—} E(s)

Solving for E(s) gives

U(s)

[ H'(s) G'(s) }
1 +
S

(v-65)

(v-66)

(v-€7)

(v-68)

(v-69)

Taking the barred transform of (V-63) and substituting (V-69) into

it yield
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G'(s) -
U(s)
—_— s
C(s, m) = (v-70)
H'(s) G'(s)
1 +
s
or
GR(X, m) U(x)
C(x, m) = (v-71)

1+ (GH)R (x)

The effects of time delay and time advance cancel each other in the

loop gain portion of (V-70). By a previous definition

H(s) G(s)
(6H), (x) =X _ (V-72)
S

For a system with unity feedback

G_(x, m) U(x)
C(x, m) = R

(v-73)
1+ Gp(x)

Modified x-transform theorems

E(x, m), then

Shifting theorem, - If 1{ [e(tﬂ
m
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CXﬂ‘ [e(t - nT) u(t - nT)] = x" E(x, m) (v-74)
The proof of this theorem is given in the derivation of the modified

x-transform throuch the use of the delayed transform.

Corollary I, If”fzm [e(tﬂ = E(x, m), then

Ckm [e(t + T)] x7 ' E(x, m) - e(mT)(x” - x) (v-75)

Proof: By definition

| (o o]
%m [e(t"'T)] = X Z e[(n+]+m) T] (xn-xn+])

n=0
(2]
= Z e [(n + 1 + m)T] (xn+] - Xn+2)
n=»" (V-76)

Let k =n + 1., Therefore,

0
/}; [e(t + Tﬂ = j{: e [(k + m) T] (xk - xk+1) (v-77)

k=1

0

Adding and subtracting the term e(mT)(x” - x) under the summation

sign gives
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x, [e(t + T)] =

8

=
1
<

it

For illustrations see Exampies 8 and 9, Appendix B.

Initial value theorem. - If jxm [e(t)] = E(x, m), then
E(x, m)

lim e(t) = 1im e(nT, m) = 1im 3

t—0" n—0 X x(x - x) |0 _

m=0 m=9

Proof: By definition

o=
E(x, m) = x Z e [(n + m)T] (x" - xn”)
n=>
(o o)
< E(x, m) = Z e [(n + m)T] (x" - X"y
n=9

Letting m equal zero in (V-87) gives

o0

N Z e(n) (x" - x™1y

m=" n="

x E(x, m)

e [(k + m)T] (xk - xk+]) - e(mT)(xJ-x)

x| E(x, m) - e(mT)(xO - x) Q.E.D.(v-78)

(v-79)

(v-80)

(v-81)
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The right side of (V-81) is recognized as the ordinary x-transform of

e(t). Therefore, by the application of the initial value theorem

for the ordinary x-transform (V-81) becomes

E(x, m) E{x)
Tim ——— = 1im

J 0
m=0 x{x - x) x—»0 X - X
xX=»

= 1im e(t) Q.E.D.
t—0

An example of the use of this theorem is given in Example 10,

Appendix B,
Final value theorem, - If Ctm [e(tﬂ = E(x, m), then,
1im e(nT, m) = 1im E(x, m)
n— 0o x —1 XO =
)€ m< 0 £m¢< -

Proof: From the shifting theorem

CKm [e(t * T)] = x;] E{x, m) - e(mT)(xO - x)

Then

(v-82)

(v-83)

(v-84)
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jk;l [et + 1)- e(t)] = x;] E(x, m) - e(nT)(x - x)

- E(x, m) (v-85)
Rearranging (V-85) gives
(t +T) - e(t) E(x,
K Lo e ()] _ e e (v-86)
T - x X
P P
However, by definition
k
%m [e(t+T)-e(t)] = lim XPZ [e[(n+l+m)T]
: k—+ 00
n=3
-eln +m)T ] - X (v-87) \

Expanding and factoring (V-87) give

ﬂ(m [e(t +7) - e(t)] = lim Fe [(m + l)T] x(1 - xp)

k>

- e(nT) x(1 - x)) + e [(m s z)T] x2(1 - x)
- e [(m + I)T] $3(1 - xg) + e v e [(m rk o+ I)T] K< xp)

- e [(m + k)r] g xp)] (v-88)

or
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‘]Cm [e(t +T) - e(t)]

(1 - xp)

= lim]e [(m + I)T] X
k=0

2

- e(mT) x + e [(m + 2)T] X" - e [(m + I)T']x3 + e

+ e [(m + k + l)T] KK+ e[(m + k)T] Xk+]] -~ (v-89)

It is observed that, if the limit is taken of each side of (V-89) as

a
x approaches one with x equal to one, (V-89) becomes

Ao [ett + 1) - o] . elo0) - e(nT)  (V-50)

X 1 1 - x 0
‘ P x =1

1im

However, from (V-86) one obtains

1im

. [e(t +T) - e(t)]'
X—] 1 - x l N

= lim  E(x, m) - e(mT) . (v-91)

X—1

Equating the right-hand sides of (V-93) and (V-91) and solvina for

e(co) give



e(c@) = 1lim

X =1

An example of the use

x-transforms is given

Complex translat

E(x, m) Q.E.D. | (v-92)

of the final value theorem for modified

in Example 11, Appendix B.

ion, - If ym[e(t)] = E{x, m), then

CKH,[e:at e(tﬂ

where

E! xeiaT, m) =

Proof: By definition

Ao (e 2 eto)

+aT

= (1 - x) eiaT(m-l) E'(xe="", m) (v-93)

E(xeiaT, m)

+aT

(v-94)

o
. zg:: o [fn N m)T] eia(n+m)T (xn ) xn+l)
n=>

(&
+amT +anT n
= e~ X e [(n + m)T] e~ (x - x

n=0
(o)
- eiame(l-x)Z e [ (n+mr]
n=0

+aT

(e X)n

(v-95)

n+1
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‘ +al  TaT.
Multipiying the right-hand side of (V-94) by e~ e gives

Ck% [e:at e(tﬂ

T T +aT &2
+amT =
= e~ e+a (e x)(1 - x) j§:: e [(n + m)T] (eiaT x)n
n=0 (v-96)
o
- (1 - x) ef2T(m1)raT Z e [0+ m1] (2T )"
n=>"
-0 - ) e:aT(m-T) E'(xe?aT, m) (v-97)
where
o0
+aT +aT +aT.n
E'(xem , m) = xe~ j{: e [(n + m)T] (xe=" ")
n=0
E(eraT, m)
= Q.E.D. (v-98)
1 - xe:aT

For an example see Example 12, Appendix B.



VI. CONCLUSIONS

The x-transform theory is based on a sampler-hoid combination,
This combination is quite prevalent in practical sampled-data systems,
The use of the hold device is necessitated because of the higher
frequencies generated by the sampler.

The x-transform theory parallels the z-transform theory and in
several cases results in some simplifications. In each case the
x-transform of a function of time is of no more complexity than the
z-transform, and in some cases the order of the denominator of the
x-transform is one less thén that of the equivalent z-transform. The
x-transform final value theorem is simply the sum of the coefficients
of the inverse x power series. In stability studies, the Nyquist path
in the xp-plane is such that the one path, the unit circle centered
at the oricin, is sufficient, A z-transform Nygquist study actually
requires two paths,

The z-transform is based on impulse modulation, The fact that
the sampling pulse in a practical system is not an impulse causes the

z-transform method to give unrealistic or sometimes even incorrect

o

res‘u]ts.]b

The x-transform method, where applicable, will always give

realistic results, The x-~transform method is anplicable to sampled-

data systems in which each sampler is followed by a zero-order hold.
There are some manipulations with the term x in the x-transform

which require mastering before the x-transform application provides a

120
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smooth analysis. The special rule for obtaining the x-fransform of a
transfer function is another possible source of error to one unfamiliar
with the transform,
It is assumed that the x-transform can be extended to the area
of nontinear control systems; however, this is a subject for future

study.
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APPENDIX B

NUMERICAL EXAMPLES

ExamEle 1

Determine by the partial fraction method the inverse x-transform

| x(1 - e'aT)

E(x) =

where a is a constant and T is the sampling period in seconds. The

solution is as follows:
E(x) / (x - x) is written as

aT

E(x) x(1 - e )

(x0 - x) (1 - e-aT xp)(x0 - x)

Through the use of the x-algebra, the above equation may be written as

-aT

E(x) % xp(l -e ) xp(l -e )

-aT

=
@ xp) (1 - Xp)(l -e xp)

9 0 -
x (1 - xp) x (1 - xp)(] - e

129
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Performing the partial fraction expansion yields

E(x) 1 1

0
X(I'XD) 1 - x 1 - e X

Solving for E(x) gives

E(x) = x -

The inverse may now be determined through the use of the table in

Appendix A as

foue)
e(t) =Z [u(t—nT)-u[t-(n+l)T]]
n=0

o0

- Z o3t [u(t - nT) - u [t - (n+ I)T]]

«©

Example 2
Determine by the use of the inversion formula the inverse
x-transform of

(1 - e-aT) X

E(x) =
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The solution is as follows:

! The inversion formula is stated as
|
I

1 E(x) x'(n+l)
e(nT) [|J(nT) - u [(n - 1)T] ] = _;%T ) ———6——2————- de
211j X - x '

E(x) x-(n+')
= - Z Residues of P
- x0 - X
-(n+1)

E(x) x
at the poles of (O) P

X - x

Substituting for E(x) gives

e(nT) [ u(nT) - u [(n - lyq ]

- - a
o aT) « (n+1) « )

(1 - X
= - V Residues of P P

A n
-aT
(1 -2 xp)(l - xp) X

-aT -n
(1 -e ) Xp

at the poles of

(1 - e-aT xp)(l - xp)

-anT
e
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Therefore,

(o]
e(t) = j{: [u(t - nT) u [t - (n + I)T]]

n=0

(o)
- Z e-anT ‘:u(t - nT) - u[t - (n + 1)T]]

n=0

This agrees with the inverse transform obtained in Example 1, Appendix B.

Examgle 3

Determine by the use of the shifting theorem in Chapter II the

x-transform of e(t + T) if e(t) = eat. The solution is as follows:

From the table of Appendix A

The shifting theorem is given as

ék [e(t + T)] =. x;] [E(x) - e(0)(x° - x)]

and



Simplifying gives

-aT 9 e-aT "

%[e-a(t+T)] ; e X -
1T - e~aT X
leta=1and T =1, Then
; 68 x0 - 0.368 x
AL = =
[ 1 - 0.368 x

= 0.368 x0 - 0.233 x - 0.986 x% - 0.0316 x3 - ...

The inverse of the last equation is plotted in Figure 38.

.50 4. 368

 -0.233

0.
0.368 -0.086]_0.049

0 ri i
0 T 27 3T 4T 5T
t

Fig. 38. - Plot of CK [e'(t+]ﬂ illustrating the result of
using the shifting theorem for a time-advance case.

-(t+1)
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Example L

Determine by the use of the shifting theorem the x-transform of

-at
e(t - 2T) u(t - 2T) if e(t) = e . The solution is as follows:

From the table of x-transforms in Appendix A

| The shifting theorem for this case is given as

C([e(t - 2T) ult - 2T)] - x§ E(x)

or
x2 (xO - x)
ﬂf[e'a(t "2 (e - zr)] = 2
1 - e'aT X
Let a=1and T =1. Then
2 3
x° - x
CK[e'(t - 2) u(t - Zﬂ =
< - 0.368 x

2 3

= x - 0.632 x~ - 0,232 xq - 0.085 x5 - ees
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The inverse of the last equation is plotted in Figure 39.

I
1.000
1.00}
< 0.75¢ | -0.632
£
~ 0.50
< 0.368
{i 1.000 0.232
© 9,25 -0.
> | 0.136
O . '0.085 0.05]
0 T 2T 3T LT T 6T .

Fig. 39. - Plot of CK,[e'(t'z) u(t-Zﬂ illustrating the
result of using the shifting theorem in a time-delay case.

Example 5

Determine the initial value of e(t) = t if E(x) = Tx / (1 - x).

Using the initial value theorem one obtains

E(x)
lim  e(t) = 1im
0
t—»0 X~ X =~ X XO =
Tx
= lim
9
x—=0 | (x -x0%] o_,

Therefore,




136

1im e(t) = 0

t—r)

Examole 6

Determine the final value of e(t) = 1 - e ot

if E(x) =
0 0 -
[ x -(x -x)/ @ -e aT x)] . Using the final value theorem,

one obtains

lim  e(t) = 1im E(x) 0
t—0co X =1 x =1

x(1 - e_aT)

= 1im
x —1 1 - e-aT X 3
X =1
or
Tim e(t) = 1
t—>C0
Examgle 7

Determine the x-transform of t o2t

using complex transiation. The
solution is as follows:

From the x-transform table
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Tx
Xl -
1 - x
By definition
E(x)
E'(x) =
1 - x
Tx
(1 - x)?

From the complex translation theorem

aT

(1 - x) Et(xe °)

Ale™]

T(x - x2) e'aT

- e-aT N \2

xj

-

—~

Example &

Determine the modified x-transform of e(t) = t + T.

From the shifting theorem

Qm [e(t + T)] x-] E(x, m) - e(mT)(x0 - x)
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From the table of modified x-transforms in Appendix A

sz

Therefore

Tx2

x-] (Tmx +

Lo [t +1)

2
x(T + mT) - mTx

1 - X
Let m=0.5and T = 1. Then
1.5 x - 0.5 x?
L [e+1] =
1 - x

A plot of e(t + T) from the last equation is given in Figure 40,

) - mT(x0 - x)




e-a(t -7 u(t
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2.5

1.5

e(t+T)

1.5

A

0 0.5T T 2T 3T LT

Fig. 40. - Plot of me [ t + I] with m = 0.5,

Examele 9

Determine the modified x-transform if e(t - T) u(t - T) =

- T). From the modified x-transform table

The shifting theorem for a time delay of one period gives

and

cKn1 [e(t - T) uft -‘T)] = x E(x, m)

17



e-amT x2(l - x)
;{ [ e-a(t -7 u(t - T)] =
m
1 - -aT
e X
Let m= 0.4, a =1, and T = 1. Then
2 3
0.67 x~ - 0.67 x
-{t-1
CKm [e ( ).u(t - l)] =
1 - 0.368 x

= 0.67 x2 - 0.1423 x3 - 0.156 x* - 0.0574 x° ....

A plot of e(t - T)u(t - T) from the last equation is given in Figure 41,

‘s
0.75F 0.670
=
r 0.50f -0.423
=
" 0.2k4
:E 0.25} 0.670 7
o -0.156| 0,091
0 2 L [ L Y A 'l 4%
0 0,47 T ya) ' 3T LT R
Fig. 41, - Plot of Ctm [e-a(t-T) u(t - Tﬂ with m = 0.4,
a=1l, and T =1,
Examele 10

Determine the initial value of e(nT, m) if
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;km [e(t)] = Im [e't] = ™ (x - x2) /(- o7 ).

Using the initial value theorem gives

E(x)
1im e(t) = 1lim
t—>0 m=0 x(x? - x) 0
x—>0 X =1
xe-mT(xj - x)
= Jim
m=3 : -
X0 x(x - x)(1 - e x) O

Through the use of the x-algebra, the last equation becomes

lim e(t) = 1

t—~0

ExamEie ii

Determine the final value of e(nT, m) if

%m [-1? [u(t) - e‘af]]

2. [e(0)]

1
x
]
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Using the final value theorem gives

Tim e(nT, m) = 1lim E{x, m) 0
n— 00 X —=] x° =1
Sm< 0fm¢<
1 e'amT (X - x2)
= ]im o——— X -
0€m< -e T x
1 _ e-aT x2 _ -amT + 2 -amT
= 1im
X -] a | -aT
2<m¢<S1 - € x

Under the definitions of the x-algebra, the last equation becomes

1
lim e(nT, m) = —
a

ExamEle 12

at

Determine the modified x-transform of e" t using complex

translation. From the table of modified x-transforms

jtm [t] i} mTx - me2 + sz
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By definition

E(x, m)
E'(X, m) 2 cmea——

mTx - me2 + sz

(1 - X)2

Using the complex translation theorem, one obtains

+at +aT(m-1) +aT

;krn [ e e(t)] = e (1 - x) E'(xe” , m)

-amT _ -
1o M (1 - x) [e aT x2 + mix - X2 e aT)]

(1 - e-al x)2




